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Abstract 

This document introduces a Python script for generating probabilistic predictions of 

tropical cyclone (TC) driven coastal flooding. It uses a machine learning (ML) framework 

to develop a probabilistic surrogate model for maximum water elevation based on an 

ensemble of water elevations simulated by a hydrodynamic ocean model. It also provides 

sensitivity analysis, uncertainty quantification, and probabilistic prediction of flood depth 

and extent based on user-defined criteria. The script employs the Polynomial Chaos ML 

method to develop the probabilistic surrogate model with several choices of penalized 

regression and cross-validation options. It has been generalized to work with outputs of 

different hydrodynamic models (such as the ADvanced CIRCulation (ADCIRC) or Semi-

implicit Cross-scale Hydroscience Integrated System Model (SCHISM)), and can be 

expanded to use other ML methods such as neural network- or decision-tree-based ones. 

The script was showcased with a step-by-step guide and evaluation of outputs for the 

case study of Hurricane Florence (2018) with 48 hours lead time. The probabilistic 

surrogate model provided a reliable prediction of maximum water elevation compared to 

the outputs of a hydrodynamic ocean model. This user-friendly script can be used for both 

risk assessment and early warning systems during the forecast period, as well as post 

storm flood damage assessment and better evaluation of flood insurance costs.    

Key Words: coastal flooding, modeling, SCHISM, storm surge, surrogate model, 

probability, machine learning, uncertainty quantification, Hurricane Florence (2018). 
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1. Introduction 

Tropical Cyclone (TC) driven storm surges pose serious humanitarian and economic 

threats to coastal communities. TC-driven hurricanes have on average resulted in over 

$22 billion damage and caused 6,890 fatalities since 1980 (NOAA COAST, 2024). These 

negative impacts are expected to worsen with climate change trends, and population and 

economic growth of coastal communities (Marsooli et al., 2019), which signifies the crucial 

need for fast and reliable prediction of storm surge and coastal flooding.  

Probabilistic approaches have become popular for uncertainty quantification and risk 

assessment of storm surge and coastal flooding especially in a limited-resource 

environment, to provide early warnings and risk communication (Davis et al., 2010; Kim 

et al., 2015; Hashemi et al., 2016; Plumlee, 2021; Pringle et al., 2023). Pringle et al. 

(2023) developed a probabilistic framework based on Artificial Intelligence (AI) technology 

that provides probabilistic prediction of coastal flooding based on an ensemble of 

hydrodynamic models’ simulations. Pringle et al. (2023) evaluated their methodology for 

three hurricanes (Irma in 2017, Florence in 2018, and Laura in 2020) and found that it 

provides reliable prediction of maximum water elevation and flood extent.  

The goal of this work is to put together a user-friendly script to implement Pringle et al. 

(2023) methodology, and generalize implementation of user-defined features for different 

steps of the process. This python script has been developed based on the 

EnsemblePerturbation package (EnsemblePerturbation, 2023). The rest of this document 

will provide an overview of the workflow and features of the script, followed by a step-by-

step explanation of the process and expected results for a case study. Outcome of this 

work will provide a valuable tool for pre- and post-storm probabilistic evaluation of coastal 

flooding, and can be used for early warning as well as damage assessment. 
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2. Workflow Overview  

In this section, the workflow is described from a high-level perspective (see Figure 1). In 

order to generate a probabilistic model for maximum water elevation, the workflow relies 

on water elevations corresponding to an ensemble of storm tracks with trajectory, 

intensity, and size variables perturbed from the original forecast or hindcast. The workflow 

takes an ensemble of maximum water elevations, calculated by a hydrodynamic model 

such as ADvanced CIRCulation (ADCIRC) (Luettich and Westerink, 2004) or Semi-

implicit Cross-scale Hydroscience Integrated System Model (SCHISM) (Zhang et al., 

2016), as input along with values for the perturbation parameters for each ensemble 

member track. This ensemble is typically generated by requesting a low-discrepancy 

sequence (e.g., Korobov) perturbation of the storm parameters (e.g., track pathway, size, 

and intensity). For testing purposes, the input can be divided into a training and a 

validation set for developing the probabilistic surrogate model which is a machine learning 

model which, after training, can be cheaply evaluated at nodes to replace the expensive 

ocean model in order to cover the full perturbation uncertainty space. To further reduce 

computational cost, only a subset of the domain near to the landfall area is calculated and 

used in the subsequent steps of the analysis. Also, the dataset is manipulated and the 

water elevation is artificially extended over dry nodes next to the flooded area (wet nodes) 

to distinguish them from dry nodes far from the coastline, and so improve the performance 

of the probabilistic model. The extended dry node elevation values are negative; the more 

negative the values are, the farther away from the wet nodes they are, and values closer 

to zero are closer to wet nodes.  

The Karhunen–Loeve (KL) - Polynomial Chaos (PC) framework (Pringle et al., 2023) is 

used to develop a surrogate model based on the training set, to find the relation between 

perturbation parameters and the subset of manipulated water elevations. To do so, first, 

KL decomposition is used to reduce the dimensionality (number of mesh nodes) to O(1-

10) modes of variation that explain a user-specified variance within the ensemble. 

Second, a PC regression model is used to generate a surrogate model that relates the 

perturbation parameters to the KL reduced modes (KL surrogate). Then the KL-PC 

surrogate is transformed back into the physical node space to provide a relation between 

the perturbation and the water elevations. Finally, the developed surrogate model is 

evaluated against the validation set and interrogated to derive the parameter sensitivities 

and percentiles of the distribution.  
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Figure 1. Workflow overview 

Features 

This probabilistic framework provides the following options and features: 

● Training/validation set division: user-defined ratio for division of dataset into 

training and validation sets.  

● Subset the region: dataset subsetting capability based on user-defined depth and 

isotach criteria. 

● Eliminate negative predictions: the option of using the log scale of elevation to 

avoid negative values for training the probabilistic surrogate model. 

● Distinguishing dry nodes: dry-node distinction by extrapolation of water 

elevation over dry nodes based on user-defined hydraulic head loss and inverse 

distance weight parameters.  

● Accuracy of dimensionality reduction: user-defined level of explained variance 

for dimensionality reduction.  

● Multiple choices of PC regression: ability to use multiple regression fits with a 

range of cross-validation options.  

● Sensitivity analysis: global sensitivity analysis of the storm parameters 

(trajectory, intensity, and size) that contribute to the forecast uncertainty. 

● Probabilistic analysis: Probabilistic analysis for a range of percentiles and 

calculation of the probability of exceeding user-defined water levels. 
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3. Step-by-Step Process with a Case Study 

This section provides a comprehensive description of the Python script with code 

snippets, followed by the outputs for a case study of Hurricane Florence (2018), that 

landed as a category one storm in North Carolina in September 2018 and resulted in 51 

fatalities and more than 17 billion dollars damages to the coastal communities of the 

Carolinas (National Weather Service, 2024).  

As noted in section 2, two sets of inputs–ensembles of water elevations and perturbation 

parameters–are needed. The National Hurricane Center (NHC) forecast errors of four 

parameters (cross track, along track, maximum sustained wind speed, and radius of 

maximum speed), and the official advisory storm track of Hurricane Florence with 48 

hours lead time (Figure 2) were used to generate perturbed hurricane tracks. Korobov 

sequence (Korobov, 1959) and random sampling were used to generate two ensembles 

of 30 and 10 perturbed hurricane tracks for training and validation, respectively. These 

tracks were used as inputs to the SCHISM model to generate 40 ensembles of maximum 

elevations for each mesh node in the domain. The SCHISM simulation domain covers the 

entire East Coast and the Gulf of Mexico with an unstructured mesh ranging from 21 km 

(in deep ocean) to 4.5 m (in the area of interest) horizontal resolution using 1,291,145 

elements and 673,957 nodes (Figure 2). The rest of this section will show how to use 

perturbation parameters and corresponding SCHISM simulations of the maximum water 

elevations to generate a probabilistic surrogate model and conduct a probabilistic analysis 

of the flooding depth and extent for the 48-hr Hurricane Florence forecast.  

 
Figure 2. NHC 48-hr official (ofcl) forecast and hindcast best-track for Hurricane Florence (2018), overlaid 
on the mesh grid for the SCHISM simulation of water elevation. Denser black color indicates where mesh 
nodes are closer together (higher-resolution), particularly notable around the hurricane landfalling region. 
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Python Packages and Dependencies  

First the script imports required modules and packages (Table 1). This script uses Python 

Standard Library along with some external packages. Here is the list of packages and 

modules that should be imported.  

Table 1. List of Python dependencies and purposes of use 

Purpose Package/module class/functions 

Dataset 
manipulation 

ensembleperturbation.parsing.adcirc extrapolate_water_elevation_to_
dry_areas 

subset_dataset 

Generic I/O argparse ArgumentParser 

ensembleperturbation.utilities  get_logger 

Pathlib Path 

KL 
dimensionality 
analysis 

ensembleperturbation.uncertainty_quan
tification.karhunen_loeve_expansion 

karhunen_loeve_expansion 

karhunen_loeve_prediction 

Numerical 
arrays handling 

numpy - 

xarray - 

Parallelization  dask - 

pickle - 

Parametrization  chaospy - 

ensembleperturbation.perturbation.atcf VortexPerturbedVariable 

PC regression sklearn.linear_model ElasticNetCV 

LassoCV 

LinearRegression 

sklearn.model_selection LeaveOneOut 

ShuffleSplit 

Plotting 
(visualization) 

matplotlib.pyplot - 

ensembleperturbation.plotting.perturbati
on 

plot_perturbations 

ensembleperturbation.plotting.surrogate plot_kl_surrogate_fit 

plot_selected_percentiles 

plot_selected_probability_fields 

plot_selected_validations 

plot_sensitivities 

plot_validations 

   

Post-processing 
of the surrogate 
model 

ensembleperturbation.uncertainty_quan
tification.surrogate 

probability_field_from_surrogate 

percentiles_from_surrogate 

sensitivities_from_surrogate 

surrogate_from_karhunen_loeve 

surrogate_from_training_set 

validations_from_surrogate 
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Code Snippet 1. List of built-in Python packages and modules for the analysis. 

In addition to that, this script has been developed based on modules from the 

EnsemblePerturbation package as follows:  

 
Code Snippet 2. List of Python modules exported from the EnsemblePerturbation package. 
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The next step is setting paths to input files (perturbation parameters, ensemble of 

perturbed storm tracks, and ensemble of maximum elevations), output directory, and then 

reading those input files. 

 
Code Snippet 3. Define paths to the inputs/outputs, and reading files. 

 

Training and Validation Sets, and Plot Perturbations  

Two sets of perturbed tracks based on Korobov and random sampling were used to 

generate two sets of ensembles for training and validation, respectively. The following 

script will read perturbation files and label ensemble members (based on the perturbation 

methods) for training and validation. 

 
Code Snippet 4. Define training and validation sets of perturbed storm tracks. 
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The plot_perturbations() function from the EnsemblePerturbation (code snippet 5) was 

then used to plot perturbed storm tracks (Figure 3), and distribution of perturbation 

parameters (Figures 4 to 7). Its inputs include the ensemble of perturbed storm tracks, 

and two sets of perturbation parameters for training and validation. 

 
Code Snippet 5. plot_perturbation() function. 

 

 
Figure 3. 30-member training and 10-member validation ensemble of perturbed official advisory storm 
track with 48-hr lead time for Hurricane Florence of 2018. Black line was added manually to roughly 

differentiate hindcast track (on the right), from perturbed forecast tracks (on the left). 
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Figure 4. 2-D distribution of four perturbed parameters across 4-D space for 30 training members. The 

training perturbations were generated using Korobov sequence methods. 

 

 
Figure 5. 2-D distribution of four perturbed parameters across 4-D space for 10 validation members. The 

validation perturbations were generated using random sampling methods. 
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Figure 6. 1-D distribution of four perturbed parameters for 30 training members. The training perturbations 

were generated using Korobov sequence methods. 

 
Figure 7. 1-D distribution of four perturbed parameters for 10 validation members. The validation 

perturbations were generated using random sampling methods. 
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Subset Dataset and Extrapolation Over Dry Nodes  

The outputs of the SCHISM simulations have water elevations at 673,957 computational 

nodes for the entire simulation domain (Figure 2). In order to reduce computational cost, 

only the area of interest (i.e., the area around the hurricane Florence landfall), is used for 

further analysis. Because surge is typically only significant when winds are strong over 

shallow depths, the subsetting of model outputs (i.e., maximum elevation, called 

zeta_max) is based on user-defined criteria of the hurricane isotach and maximum ocean 

depth. Typically, the 34-kt isotach and 25-m isobath is used as shown below for inputs to 

the subset_dataset() function from the EnsemblePerturbation package below: 

 
Code Snippet 6. Subsetting model outputs based on user-defined criteria for the domain. 

The output of the script shown in code snippet 6 is a subset of the dataset down to 

328,715 nodes, which is 48.8% of the original mesh. The next step involves loading the 

subsetted dataset (code snippet 7), and dividing it into two sets for training and validation 

(code snippet 8).  

 
Code Snippet 7. Load subsetted dataset. 
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Code Snippet 8. Divide the subsetted dataset into training and validation sets. 

In order to improve the probabilistic prediction of inundation, as recommended by Pringle 

et al. (2023), the training dataset is adjusted by artificially extrapolating water elevation 

over dry neighboring mesh points. This manipulation of the dataset will take into account 

nearshore dry nodes for model development and differentiate them from dry nodes far 

from the flood region that might never get flooded. For this purpose, inverse distance 

weighting (IDW) extrapolation with a hydraulic head loss factor (with user-defined 

parameters suggested by Pringle et al. (2023) is used as follows:  

 
Code Snippet 9. Manipulate training set. 

 

Dimensional Reduction  

The following script (shown in the code snippet 10) uses the Karhunen-Loeve (KL) 

expansion, based on Principal Component Analysis (PCA) (Abdi and Williams, 2010), to 
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reduce the dimensions of the subsetted (328,715) nodes with user-defined level of 

variance (i.e., 0.99).  

 
Code Snippet 10. Evaluation of KL expansion. 

It will reduce the dimension of the dataset and return KL expansion parameters such as 

eigenvalues shown in Figure 8. 

 
Figure 8. Plot of 27 eigenvalues of the subsetted dataset. 
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The next step is the evaluation of the KL prediction (code snippet 11) to reconstruct water 

elevation for each ensemble member. Figure 9 shows a plot of reconstructed elevations 

versus actual values for each ensemble run of (30) training sets, and Figure 10 shows 

the spatial plot of actual and reconstructed adjusted water elevations (with depths) for a 

randomly selected ensemble member (No. 15). Note that plotted depths include negative 

values due to the artificial extrapolation. Negative values are kept for training the 

surrogate model but are omitted at the time of validation or probabilistic prediction.  

 
Code Snippet 11. Evaluation of KL prediction. 

 

 
Figure 9. KL fit of adjusted water elevation (in meters) at each subsetted node among all training 

ensemble members. 
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Figure 10. Comparison of the actual and KL reconstruction of simulated water depth (with extrapolation 

adjustment) (in meters) for ensemble No. 15. 

Surrogate Model Expansion  

A third-order Polynomial Chaos (PC) based on elastic net penalized regression with 

leave-one-out cross-validation (from scikit-learn package) is used to develop the 

surrogate model. These parameters are user-defined and can be changed to other 

potential values such as second-order PC (=2), lasso regression (=LassoCV), and 

shuffle-split cross-validation (=ShuffleSplit). Code snippets 12 and 13 show the parameter 

setup for the PC model, and its implementation for surrogate model development, 

respectively.  

 
Code Snippet 12. PC parameters setup. 
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Code Snippet 13. Generating a surrogate model from the training set. 

In order to evaluate the KL-PC surrogate model, the fit of polynomial surrogate to (27) KL 

eigenmodes for (30) training sets are evaluated as follows:  

 
Code Snippet 14. Validation of surrogate fit for training set. 

The output of code snippet 14 is shown in Figure 11. Note that the correlation of some of 

the higher modes is zero since the regression penalizes inconsistent fits across the cross-

validation set and chooses to return no prediction for that mode instead, resulting in a 

more parsimonious surrogate model.   
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Figure 11. Comparison of surrogate for the KL samples. 

Once the performance of the surrogate model for (27) KL eigenmodes has been 

evaluated, the final step for KL-PC surrogate model expansion involves transforming the 

surrogate from (27) KL eigenmodes to all 328,715 subsetted nodes, as shown in code 

snippet 15. 
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Code Snippet 15. KL-PC expansion to subsetted nodes. 

 

Surrogate Model Evaluation 

The surrogate model for all (328,715) subsetted nodes is validated against training and 

validation sets and used for sensitivity analysis and probabilistic predictions.  

Validation 

The validations_from_surrogate() function from the EnsemblePerturbation package 

(shown in code snippet 16) calculates statistics of the surrogate model performance for 

both training and validation sets. The plot_validations() function plots them as shown in 

Figure 12.   

 
Code Snippet 16. Validation of surrogate with ensemble runs. 
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Figure 12. Error statistics of the surrogate model compared to the training (left), and validation (right) 

ensemble members. (CORR: correlation coefficient, CORRw/d: wet/dry correlation coefficient, MB: mean 
bias, MAE: mean absolute error, RMSE: root mean square error). 

In addition to error statistics, another way to validate the surrogate model is the 

comparison of predicted water elevation from the surrogate model with water elevation 

from selected validation runs (code snippet 17) as shown in Figure 13. 

 
Code Snippet 17. Plot water elevation from surrogate and selected validation runs. 
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Figure 13. Validation of surrogate model for the random ensemble run No. 2. (in meters) 

Sensitivity Analysis 

The sensitivities_from_surrogate() function from the EnsemblePerturbation package 

calculates main and total sobol sensitivities (Sochala et al., 2020) of water elevation to 

the four perturbed parameters across the (328,715) subsetted nodes. Code snippet 18 

shows how to extract sensitivities from surrogate and make sensitivity plots (shown in 

Figure 14). For the case of study of hurricane Florence (2018), these results showed that 

variation of hurricane cross track had the highest impact on maximum water elevation, 

followed by hurricane along track, while the radius of maximum winds had the lowest 

impact on maximum water elevation (Figure 14).   

 
Code Snippet 18. Extract sensitivities from surrogate and plot them. 
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Figure 14. Sobol sensitivities of four variables along 328,715 nodes. Main sensitivity (top) quantifies the 

effect of each of four variables independently, while total sensitivity (bottom) measures the contribution of 
a variable based on its dependency to/interactions with the other variables. The colorbar (unitless) ranges 

from zero (no sensitivity) to one (the highest sensitivity). 

Probabilistic Predictions 

The EnsemblePerturbation package provides two types of probabilistic analysis of the 

surrogate model: 1) quantiles/percent exceedances (code snippet 19), and 2) 

probabilities of exceeding a given elevation (code snippet 20). Figures 15 and 16 show 

sample outputs for the 50th percentile and probability of exceeding 3ft (~1m), respectively.  
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Code Snippet 19. Calculate and plot five percentiles from the surrogate and ensemble model. 

 

 

Figure 15. Comparison of 50th percentile of water elevation (in meters) from the surrogate (left) and 
validation set from the ensemble of elevations from hydrodynamic model (right). 
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Code Snippet 20. Calculate and plot probability of exceeding user defined levels from the surrogate and 

ensemble model. 

 

 

Figure 16. Probability of water level exceeding 3ft (~1m) from the surrogate (left) and validation set from 
the ensemble of elevations from the hydrodynamic model (right). 
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4. Summary 

This document provides an overview of a Python script for probabilistic prediction of TC-

driven coastal flooding. It showed how to use an ensemble of perturbed storm tracks and 

corresponding simulated water elevations, to develop a surrogate model for probabilistic 

analysis of coastal flooding. A KL-PC framework was used to generate the surrogate 

model for a training set and validated against an independent validation dataset. Lastly, 

it was shown how the developed probabilistic surrogate model can be used for global 

sensitivity analysis of water elevation to the perturbed variables. This framework provides 

probabilistic prediction of water elevation based on user-defined quantiles, and also the 

probability of water level exceeding given elevations across the domain. All functions 

used in this script are publicly available through the EnsemblePerturbation Python 

package on GitHub (EnsemblePerturbation, 2023). 
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